(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f(g(x), s(0), y) → f(g(s(0)), y, g(x))
g(s(x)) → s(g(x))
g(0) → 0
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(g(z0), s(0), z1) → f(g(s(0)), z1, g(z0))
g(s(z0)) → s(g(z0))
g(0) → 0
Tuples:
F(g(z0), s(0), z1) → c(F(g(s(0)), z1, g(z0)), G(s(0)), G(z0))
G(s(z0)) → c1(G(z0))
S tuples:
F(g(z0), s(0), z1) → c(F(g(s(0)), z1, g(z0)), G(s(0)), G(z0))
G(s(z0)) → c1(G(z0))
K tuples:none
Defined Rule Symbols:
f, g
Defined Pair Symbols:
F, G
Compound Symbols:
c, c1
(3) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
F(g(z0), s(0), z1) → c(F(g(s(0)), z1, g(z0)), G(s(0)), G(z0))
We considered the (Usable) Rules:
g(s(z0)) → s(g(z0))
g(0) → 0
And the Tuples:
F(g(z0), s(0), z1) → c(F(g(s(0)), z1, g(z0)), G(s(0)), G(z0))
G(s(z0)) → c1(G(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = [3]
POL(F(x1, x2, x3)) = [3]x2 + [3]x3
POL(G(x1)) = [2]
POL(c(x1, x2, x3)) = x1 + x2 + x3
POL(c1(x1)) = x1
POL(g(x1)) = [1]
POL(s(x1)) = x1
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(g(z0), s(0), z1) → f(g(s(0)), z1, g(z0))
g(s(z0)) → s(g(z0))
g(0) → 0
Tuples:
F(g(z0), s(0), z1) → c(F(g(s(0)), z1, g(z0)), G(s(0)), G(z0))
G(s(z0)) → c1(G(z0))
S tuples:
G(s(z0)) → c1(G(z0))
K tuples:
F(g(z0), s(0), z1) → c(F(g(s(0)), z1, g(z0)), G(s(0)), G(z0))
Defined Rule Symbols:
f, g
Defined Pair Symbols:
F, G
Compound Symbols:
c, c1
(5) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
F(
g(
z0),
s(
0),
z1) →
c(
F(
g(
s(
0)),
z1,
g(
z0)),
G(
s(
0)),
G(
z0)) by
F(g(x0), s(0), x1) → c(F(s(g(0)), x1, g(x0)), G(s(0)), G(x0))
F(g(x0), s(0), x1) → c(G(x0))
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(g(z0), s(0), z1) → f(g(s(0)), z1, g(z0))
g(s(z0)) → s(g(z0))
g(0) → 0
Tuples:
G(s(z0)) → c1(G(z0))
F(g(x0), s(0), x1) → c(F(s(g(0)), x1, g(x0)), G(s(0)), G(x0))
F(g(x0), s(0), x1) → c(G(x0))
S tuples:
G(s(z0)) → c1(G(z0))
K tuples:
F(g(z0), s(0), z1) → c(F(g(s(0)), z1, g(z0)), G(s(0)), G(z0))
Defined Rule Symbols:
f, g
Defined Pair Symbols:
G, F
Compound Symbols:
c1, c, c
(7) CdtLeafRemovalProof (ComplexityIfPolyImplication transformation)
Removed 2 leading nodes:
F(g(x0), s(0), x1) → c(F(s(g(0)), x1, g(x0)), G(s(0)), G(x0))
F(g(x0), s(0), x1) → c(G(x0))
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(g(z0), s(0), z1) → f(g(s(0)), z1, g(z0))
g(s(z0)) → s(g(z0))
g(0) → 0
Tuples:
G(s(z0)) → c1(G(z0))
S tuples:
G(s(z0)) → c1(G(z0))
K tuples:none
Defined Rule Symbols:
f, g
Defined Pair Symbols:
G
Compound Symbols:
c1
(9) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
G(s(z0)) → c1(G(z0))
We considered the (Usable) Rules:none
And the Tuples:
G(s(z0)) → c1(G(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(G(x1)) = [5]x1
POL(c1(x1)) = x1
POL(s(x1)) = [1] + x1
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(g(z0), s(0), z1) → f(g(s(0)), z1, g(z0))
g(s(z0)) → s(g(z0))
g(0) → 0
Tuples:
G(s(z0)) → c1(G(z0))
S tuples:none
K tuples:
G(s(z0)) → c1(G(z0))
Defined Rule Symbols:
f, g
Defined Pair Symbols:
G
Compound Symbols:
c1
(11) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(12) BOUNDS(O(1), O(1))